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PRECONDITIONED ITERATIVE METHODS FOR NONSELFADJOINT
OR INDEFINITE ELLIPTIC BOUNDARY VALUE PROBLEMS

James ‘H. Bramble
Mathematics Department
Cormnell Unfversity
Ithaca, New York
U.S.A.

and

Joseph E. Pasciak
Brookhaven National Laboratory
Upton ,SN:H York
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Y e authers -
~¥e consider a Galerkin-Finite Element approximation

to a<«general linear elliptic boundary value problem
which may be nonselfadjoint or indefinite. W€ They
show how to precondition the equations so that the
resulting systems of linear algebraic equations
lead to iteration procedures whose iterative
convergence rates are independent of the number of
unknowns in the solution.
(\
1. INTRODUCTION.

In recent years, the application of iterative methods to
preconditioned 1inear systems has been extremely successful in a variety
of complex physical applications [3,16]. Many articles are available
in the Titerature which report on the favorable performance of such
methods [3,6,10,12].

The two aspects of a resulting algorithm consist of the
preconditioner and the underlying iterstive msthod [1,8,12]. Various
iterative mpthods, the most papular being the conjugate gradient (CG) and
certain normal forms of the CG mathod, have been considered extensively
both from a theorstical and an experimental viewpoint (see [10] and the
references therein). It has been demonstrated that, in gemeral,
fterative algorithes with the same theoretical convergence retes




ccnverge, in practice, at about the same rate‘. The question of choosing
an appropriate preconditioner is much more difficult. The -
preconditioner must in some way be similar to the inverse of the system
which is being solved. Consequently, the evaluation of the
preconditioner usually requires the solution of a system of equations and
so if the method is to result in an improvement of computational
efficiency, the preconditioner must have some property which makes it
easier to solve than the original system. The iterative convergence

rate of the algorithm is extremely sensitive to the choice of
preconditioner. Indeed, the choice of a more anoronriate

preconditioner may reduce the number of iterations by an order of
magnitude or more in a given problem.

In this paper we illustrate some techniques for analysing
preconditioned iterative methods for nonsymmetric problems. We will
discuss the problem of choosing an appropriate preconditionef and study
two different iterative algorithms. Typical finite element
discretization of an elliptic boundary value problem leads to a matrix :
problem ) , ' . {

(1.1) Mc = d. J |

where M is the "stiffness" matrix associated with the discretization
and is nonsingular and ¢ and d are vectors. We seek a
precondi tioner M;l such that M, fis symmetric positive definite,

(H,) 1 is easier to compute than (n)'h and (N )1 *approximates
in some sense” (H) . System (1.1) can of course be replaced by the
equivalent system

(1.2) n,‘ N nc-n‘n‘ w4
The matrix M's Mt H{‘ n;’ M s symmetric positive definite and the .

first algorithm is defined by applying the conjugate gradient method
to (1.2). Alternatively, (1.1) is equivalent to the problem

(1.3) n;' M T e . n;‘ Ol L

1) e nuber of fterations to reach a desfred accuracy may vary by at most
a factor of five [6,10].
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The matrix M" = M;] ut

symmetric operator with respect to the inner product defined by

H;] M although not usually symnetric, is a

<<w,y>> = (M] w~) sV, -

The CG method can be applied to (1.3) in the <<-.,.>> i{nner product

and leads to Algorithm II of Section 2. OQur analysis suggests that the
preconditioned iterative method based on (1.3) is more robust than that
based on (1.2) since results for (1.2) require additional hypotheses. In
fact, we have not been able to obtain results for the scheme based on
(1.2) unless the elements used in the methods are of "quasi-uniform”
size. |

_ We shall present two general theorems which can be used to derive
certain discrete stability estimates. Such estimates lead to bounds on
the iterative convergence rates of algorithms for finding the solution of
matrix equations resulting.from the finfte element discretization of
elliptic boundary value problems which may be nonsymmetric and/or
indefinite. We show how these general results can be applied in a
finite element approximation to the Poincaré prioiem. Both strategies
depend upon a priori stability estimates for the continuous problem and
use the approximation properties of the discretization to derive the
stability estimate for the matrix problems.

The first theorem leads to a strategy which uses a positive definite
symmetric problem as a preconditioner for a more coan_cated
nonsymmetric and/or indefinite problem. The problem of the efficient
solution of positive definite problems, although not completely solved,
has been extensively researched. For example, matrices corresponding
to positive definite symmetric problems often have certain diagonal
dominance properties which imply that varfous sparse matrix packages
[9,11] can be used for their solution. Also, there are “fast solver"
algorithms available for certain elliptic oroblems on a variety of
domains [5,14,15]. Our analytical results guarantee that the iterative
convergence rate for our algorithms is independent of the nusber of
unknowns in the system. Thus the cost of convargence to a given
accuracy grows linearly with the size of the problem.

The first strategy is applicable to, for example, problems mn
the differential operator A can be decomposed into a symmetric positive
definite operator L and a compact (but not small) perturbation B. The




operators A, L, and B are approximated by discrete operators RAys
Lh' and Bh derived by finite elements. The discrete approximation
to the solution u of the original problem i.s defined as the solution
of

(1.4) (L, +8,)u=F.

Problem (1.4) can be replaced by the equivalent problem

(1.5) L;‘ (L, +8,)U = L;‘ F.

We derive the appropriate stability estimates for (1.5) which guarantee
that the CG method applied, with respect to <<-,s>>, to (1.3) converges
at a rate independent of the number of unknowns in the discretization. In
addition, the stability results yield immediately estimates for the i
discretization error u-U. '
: We give a2 second theorem which, under additional hypotheses,
] provides another stability estimate. This estimate, under a further
, restriction, can be used to show that the CG method applied to (1.2) y
' converges to the solution of (1.2) at a rate which is independent of the
g number of unknowns in the discretization.
i An outline of the remainder of the paper is as follows. In Section 4
we describe two conjugate gradient algorithms for matrix problems.
Section 3 gives some preliminaries and notation to be used in the paper.
In Section 4 we state the type of estimates needed to guarantee rapid
convergence for some {terative methods for solving nonsymmetric and/or
indefinite probiems. Two theorems used to derive the stability estimates
are given in Section 5. In Section 6 we apply the theorems to a finite
element approximation of a general elliptic boundary value problem.
Finally in Section 7 we apply a stability estimate to bound the
discretization error.
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2. IENT ALGORITHMS.

We dascribe the algorithms which result from applying the conjugate
gradient method to the preconditioned systems (1.2). and (1.3). In either
case we assume that we are given an inftial approximation % to the
solution ¢ of (1.1) and the {terative algorithm produces a sequence of




. ALGORITHM II. r-n;’n‘n;’n.

{terates ¢ for { > Q. Ne stop the itarative procedure when the
resfidual error d-Mc becomes sufficiently small. UWe note that applying
the conjugate gradient method to preconditioned systems as

117ustrated in the following algorithms 1s not-novel however we include
the detafls for completeness. '

Applying the conjugate gradient mathod to (1.2) gives the following
algorithm: '

ALGORITHM I. M* = ab n;’ n;’ "
(1) Oeffne ry=p, =M n;‘ n;' (d-1cy).

(2) For 1 >0 define
ALY

01 * zﬁ Pi’° ’f
Ce1 * S T2y Py
Fio1 = Ty g W Py
(".' "14.])° p
-
b TR T
Piol " Tre1 ~ B Py -

Applying the conjugate gradient method in the <<e<,>> {nner
product to (1.3) gives the follawing algorithm:

(1) Oetine vy =gy = 67 0F T (ency). -—-————f.:‘;';“;;‘;?——g‘—-’
0 DTIC TAB

Unannounced 0

(2) For 120 dafine

e+ — P LETrR—
(nr)ep o
[}

% °© 1Py)* (W Distribution/
| Availability Codes |
o1 S * % By Avail and/or

Dist Special

Pgor ~a p /
102 Tl Bl Bl ﬁ', :
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3. PRELIMINARIES AND NOTATION.

Throughout this paper we shall be concerned with solving boundary
value problems on a bounded domain O contained in R with
boundary I . To stats our stability estimates, we shall make use of
various spaces of functions definedon Q . The space Lz(n) is the
collection of square integrable functions on Q ; that is,a function f(x)

defined for (x.y) fn @ is in L(Q) 1f -
‘{ f(x..v)z dxdy < =

e L2(3) inner product is defined by

(f.g9) = g f(x.y) g(x.y)dxdy for f,gc¢ Lz(n).

We shall also use the Sobolev space H'(n). Loosely, & function f s
in W@ ir ¢ 3L and g—; are all 1n L23(Q). Thus for

functions 1n H'(2), we can define the Dirichlet form by

or.a) = f L 3 v B Doy

Ne shall also denote the Lz(l') {nner product by

For any posttive nteger T, the Sobolev space of L’(a) -functions
whose r'" order partial derivatives belong to L2(3) will be denoted by
w(a).

Me also Tet C and C, for 120 dencte positive constants. The
values of C and c, my be d¢ifferent in different places however €
and C, shall always be ndependent of the mush paremster h dafining
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" the approximation method. Thus C and Ci will always be independent

of the number of.unknowns in the discretization. .

To define the approximation of later sections we shall need a
collection of finite element approximation subspaces {Sh}, 0<h<1,
contained in H’(n). Typically, finite element approximation subspaces
are defined by partitioning the domain Q into subregions of size h and
defining Sh to be the set of functions which are continuous on Q and
piecewise polynomial when restricted to the subregions (see [4,7,17]
for details). For example, one could partition Q into triangles
of size h and define Sh to be the functions which are continuous
on Q and linear on each of the triangles. Alternatively, Q could
be partitioned into rectangles and Sh could be defined to be the ]
functions which are continuous on Q and bilinear on each of the
rectangles.

4. ESTIMATES FOR THE CONJUGATE GRADIENT METHOD.

Our analysis of iterative algorithms for precomditioned systems is
based on stability estimates {or the continuous or ncndiscrete problem
and the error estimates between the continuous solutions and their
discrete approximations. To study the properties of the solutions of
boundary value problems in partial differential equations, it is
natural to consider operators in their basis free representations since
complete sets of basis functions are usually too complex to be of much
practical value. Consequently, it is natural to think of the process
of solving for the discrete solution of the finite element equations as a
basfs free operator on the finite element subspace S, of H'(Q) . We
represent differential and solution operators by the notation A, B,

L, or T whereas their discrete counterparts shall be respectively
denoted A,,B,, L, and T,.
The CG method can be applied to find the solution X of the probiem

(4.7) Ly XY

where ‘h» is & symmetric positive definite operator with respect to some
inner product (cf. [13]). The CG algorithm requires an initial .guess X, and
producss an approximation xn to X after n fterative steps. It is
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well known that

v - .

(4.2) Ix-x i, <2 <%:_>ﬂ -l

where Yy is the condition number for Lh and is defined to be th> '
ratio of the largest eigenvalue of Lh to the smallest. We note that
if Lh satisfies the inequality

(4.3) €y M2 < (L W W), < CIMIE foraml ey,

--where ("°)H denotes the H-inner product, then the condition

number vy is bounded by C‘I/CO‘ Thus estimates of the type (4.3)
in conjunction with (4.2) lead to convergence estimates for the CG
method applied to (4.1). ‘

The problem of finding the finite element solution in the examples
of later sections can be reduced to solving for the solution X of a
nonsingular operator equation

(4.4) A, X = Y i

where Ah is a nonsymmetric and/or nonpositive operator on Sh. We

shall first precondition the system, multiply by the adjoint and

then apply the CG method in the appropriate inner product.
We assume that we have a symmetric positive definite operator

Th defined on Sh for a preconditioner. The types of preconditioners

for which we can get analytic results will be described in later sections.
Ne note that problem (4.4) can be replaced by the problem of

finding X in S satisfying

(4.5) A;Th Thlh.x-lg‘l’h Y

where A; is the Lz(a)-adjoint of “h' The CG method with respect

to the L2(R) f{nner product can be used to solve (4.5). The .
convert rete of the resulting algorithm is bounded by (4.2) in

the L°(0) nom where Y s bounded by c,/c,, for ay Gy and

G satisfying '
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(4.6) ;:wuz < Ima W,
0 (Q) = h h L h

rd

2
< C,[IW f 11 WesS
(@)~ ]” “LZ(Q) or a

-

In certain applications, estimate (4.6) can be used to derive bounds on

the iterative convergence rate of Mgorithm I.-
Alternatively, problem (4.4) is also equivalent to the problem
of finding X in Sh satisfying

*
(4.7) Th Ah Th Ah Xs= T Ah Th Y.

The operator B = Th Ah Th Ah is symmetric positive definite in the
inner product (Th W, V). Applying the CG method to the solution of
(4.7) in this inner product gives an algorithm which converges at a rate

described by (4.2) where vy _§_C.|/C0 for any C0 and C1' satisfying
-1 -1
(4.8) ColTy " W.M) < (T, AW, AN) < Ci(T " WW) forall Wes, .

In applications, estimate (4.8) is used to derive iterative convergence
rates for Algorithm II.

5. STABILITY THEOREM.

In this section we give general results which can be used to derive
estimates of the form (4.6) and (4.8).

Theorem 1. Let R be a continuous operator and Rh 5§ its discrete
approximation. Assume that the following stability and error estimates
hold: )

for all 98¢ S,.

(5.1) Mn‘( < CCl(1+Ry) o] 4l h

+ [lef
RINRE L L
For any ¢ > 0 there exists ce such that

1
5.2 (o I+R) + cll¢ for all ¢ ¢ H'(Q).
(8:2) Dol gg) < G NI g0, * <ol ) *€

(5.3)  [(R-R)el 2 < cn ol dg T e n(a).




Then there exists h0>» 0 such that for h < h

rd O he
(5.4) liell < Cli{1+R )8]. forall ecS_.
W@ = " ) . h
Remark 1. Estimate (5.4) combined with !
(5.5)  [J(I+R )e| < cliefl for all 6¢ S
M ) = " ) h

guarantees a uniform (independent of h) iterative convergence rate for
the CG iteration for the solution of

(I+Rh)* (I+R JU = F

where + denotes the adjoint with resoect to the H](Q) inner

oroduct. In our finite element applications, I+Rh = ThAh and .

2 -1 2 - ) : .
C.llefl < (T ' 8,8) <C.lef for all 8¢ S_ .
0 H](Q) h 1 H’(Q) h
Thus (5.4) and (5.5) will imply (4.8) for the particular examples of .
the next section.

Theorem 2. Let T1 and T2 be continuous operators and T; and Ti

X be their corresponding discrete approximations. Assume that the following
) three estimates hold:

1 12 el ' 2
5.6 CAlT < c T for all L%(a).
(5.6) 0" u"Lz(ﬂ)'- i u“LZ(Q) b ]h ““Lz(n) or a ue

1 .4 2 2
(5.7)  [(T°-T) uﬂLz(n).g Ch "u"Lz(n) for a1l  u e L°(Q) .

fy=1 2
(5.8) Hr))™" vl < Ché|u] forall UeS$
i) L3(a) "

for 1 =1,2. Then

2 2/ely=1 .02 2
(5.9)  c.lull < fITe(T)™ v < C, llull forall UcS .
0™ 2y = T2 = 1 ) h
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Remark 2. Estimate (5.8) is an inverse property for the operator Tg

and in applications is derived from the hypothesis that the mesh

elements are of "quasi uniform" size Estimate (5.9) coincides with

-1
(4.6) when ( ) , ' -

Remark 3. The proofs of the above two theorems are simple and

consequently will not be included.

6. THE POINCARE PROBLEM.

To illustrate our approach we consider a finite element
approximation of the Poincaré problem in this section. We consider the
following model problem:

du+ et oin g
(6.1) /
Hesd *T=0 on T
2 4t
where A = ;;5 + ;;f » N -and <t are respectively the normal and

tangential directions along T. For simplicity we have considered

. constant coefficients in defining the differential equation as well as

the boundary condition. Our results and iterative algorithms extend to
variable coefficient problems without any complications. We also assume
that the solution of (6.1) exists and is unique.

The finite element approximation to (6.1) can then be ‘defined by the
Galerkin technique. Multiplying (6.1) by an arbitrary function ¢ and
integrating by parts shows that the solution u satisfies
(6.2) D(u.¢) + ( o‘) + K{u.9) + <B * Yu,$> = ((o‘)

The finite element approximation U to u 1is then defined to be the
function U in Sh which satisfies

(6.3) D0(u,8) + ( ,e) + K(U,0) + <8 0 W,8> = (f,0) forall 6cS5,.




Equation (6.3) can be used to derive a system of equations of the form
(1.1) defining the discrete solution U, i.e., using a basis -for Sh’
(6.3) gives N equations for the N unknowns defining U in that
basis. ' .

To describe iterative methods for the solution of (6.3) and/or
the corresponding matrix system, we shall need to use some operator
notation. First, we consider the Neumann problem

we-Aw=f in Q

(6.4)

ow
an =0 on T

Given a function f in LZ(Q). the solution w of (6.4) is in HZ(Q)
if as we shall assume, I {s sufficiently smooth. We denote the
solution operator T as the map which takes f to Tf=w. T isa
bounded map of L2(2) into W2(2). The finite element approximation to
(6.4) is the function’ W in S, satisfying '

(6.5)  D(W,0) + (W,8) = (£,8) forall 6cs, .

The discrete solution operator Th can then be defined as the map which
takes f to Th f =W Th is a map from Lz(n) onto Sh and the
following convergence estimate is well known (cf. [2]):

6.6) T -T)f cnlif .
( T, )11“1(‘2 < cniifl 5

) L°(Q)

In a similar manner, we can define solution operators for the following
variational problems:

D(X.8) + (X.0) = (32.0) + (k-1)(z.0)
and
p)
D(w,0) + (vi0) = <8 3T * Yw,. .

We define the solution operators R’:! X and R%m g y. The corresponding
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finite element approximations are given by the solutions X and Y in
S, satisfying . . )

h
0(x,8) + (x,6) = (.0 + (K-1)(2,8) for“all @ e s,
and

0(Y,8) + (Y,8) = <@ g%+ vu:0> for all @€, »

respectively. The discrete solution operators are then defined by
R; 23 X and Rﬁ w =Y and the following convergence estimates hold:

6.7) (R! =) < Chlz
l(R, z"‘_z(g) < chfl UH1(Q)
and
(6.8) (RZ - R < Ch )
168y - RJel 2y < Dol g

In terms of operators, problem (6.1) is eguivalent to

1

(1+R + R usTAus=TF.

The existence and uniqueness properties of solutfons of (6.1) can be used
to show that for any € > 0 there is a constant Ce such that

1,..2
6.9 ¢ C_ [[{I+R"+R®)® + ¢ll¢ .
(6.9) I “Lz(ﬂ)': e ulz(‘) I “Lz(ﬂ)

The dﬂscr!te'estjmatd

(6.10) [e < c{J(1+R) + R2)e + [l } forall 6 ¢
Bl ) < COIA, R)e] LTI s,

n'(q)

is {mmediate from the definition of n,‘. . Problem (6.3) can be stated
in terms of operators as

(1erl s BusT A UeT, 1.

e cidaiiining L F



Applying Theorem 1 we get the following stability estimate:

2 2 2
(6.11) .l < [T A WDy - < M for all WeS,..
o1 < hPh wia) = Mg h
The second inequality in (6.11) can be easily derived from the definitions.

The constants (:0 and c1 in (6.10) are independent of the mesh
sfze h. Now it is easy to check that

(6.12) (T;’ W.V) = D(W,V) + (W,V) for all W.Ves, .

Comparing (6.12), (6.11), (4.7) and (4.8) implies that the CG method
applied to

(6.13) TAYTA UsT AT f

converges with a reduction per iteration which can be bounded
independently of the number of unknowns.
let M and n, respectively denote the "stiffness” mtrices

corresponding to (6.3) and (6.5) 1n a given basis & = (s,}} . !

for sh If the coefficients of a function W in Sh in terms of the
basis 8 are represented by the vector ¢ then

d=i' N e

- - - e

gives the coefficients of T” g Th‘h W in terms of @&. Consequently,
the sequence of vectors < generated by Algoritm 11 gives the
coefficients of the sequance of functions generated by the CG method
app1i-d to (6.13). Thus the iteretive convergence estimates for
the 3 ~thod applied to (6.13) 1mply iterative convergence rates for
4 Algu T
. Th J.ve procedure is an example of an {terative convergence
| anaiysis in H'(Q). We also nete that 1f T! 15 snether discrete
operator on Sh which is spectrally equivalent to ‘I" fn the sense that

(6.14) (T, W) < (1) W) < )(T, W) toramt WS,




. . . .
B P

v s

then T, can be replaced by T:' in (6.11). .
We next consider an iteratwe analysis in L (Q) based on
Theorem 2. Let T L (Q) H (a) denote the solution operator
for problem (6.1) with 8 =0, i.e., T f=u. The solution operator T
satisfies an estimate of the form

(6.15) ¢ T ¢ < ITfl <c Iy i
ol uLz(sz)‘II b2ig) < 1 b b2

We have restricted to the case of B = 0 since (6.15) is well known in
that case. Assume that both T] and T can be approximated in the same
finite element subspaces ang Tet T; and fh denote the corresponding
discrete solution operators. The following convergence estimates are well
known for a wide class of finite element applications [27]:

(6.16) |[(T - e 2 < cn?jfy

ey~ L=(q)

We finally assume that the inverse properties

iy=1 <2
6.17 T) e < Ch ) » 8 €S,

are also satisfied. Estimates of the type (6.17) can usually be
derived from inverse assumptions for the subspaces. Applying Theorem 2
gives that

6.18)  C.W < Tt w < C, W for all We S
( ol 20, < MMM ¥ 2., < M h

2(a)

Estimate (6.18) guarantees that the CG method applied in Lz(n) for the
solution of

(6.19) A‘ TnThhp X = N ThTh f

where Ah (T;)" , will converge to the solutfon X at a rate which
is {ndependent of the number of unknowns in sh. The resulting algorithm
does not however comspond to Algorithm I. To guarantee rapid iterative
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convergence rates for Algorithm I we must make additional assumptions.
Again we use the basis 8 for Sh . If We sh we denote by Cu the
coefficients of W in the basis 8. We require that

(6.20) ColCy &) = (N,N)LZ(Q): C(Cy-C,) forall Wes, .

Estimate (6.20) states that the Gram or mass matrix is "equivalent"
to the coordinate inner product. Combining (6.19) and (6.20) implies

(6.21) Ch lc |2 < IM"l M clz <C |c|z
0 -1 -1
for all N dimensional vectors c¢. Estimate (6.21) is finally an

estimate which can be applied to guarantee uniform iterative convergence
rates for Algorithm I.

7. AN _ESTIMATE FOR THE DISCRETIZATION ERROR.

In order to estimate the discretization error u-U with u and U
defined by (6.2) and (6.3)  respectively, we introduce the H‘(n)- ,
projection l'h onto Sh‘ It is defined for veH‘(n) by

(7.1) D(Ph v,8) + (Ph v,8) = D(v,8) + (v,8), forall @6c¢ Sh .
It s well known that Ph satisfies
-1
(7.2) =PIVl , < "]
h H‘(n

) KW' (2)

for ve H'(R) and some r > 1 which depends on the choice of
Sh(cf. {2,7). 1In view of (7.2) to estimate u-U we need only consider

Ph u-U. Hence we apply (5.4) to obtain

p,u-U SR )P u-U)] |
Pt 1y = u‘ ) Pu-OL )

with 'h . R; + R: . From the definitions of l!‘. I;. Rz and R§ we
see that

(1R, )(P, u-U) = P, (RV+RE) (P -T)u .
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Hence

. 1,2
hPyu-u |l < Cfjp, (R+R%) (P, ~1)uli
h™ " Tlgy = N b dl(a)
from which it follows immediately that
(7.3) t'p u-U || < Cl(1-P Juj
“h T W)= " (q)
Thus using (7.2) we obtain the estimate for the discretization error,
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